
PEGembed: Lay Summarization for Biomedical Scientific Journals

ZHIHENG WANG
zhihengwang@umass

AHMED JAAFAR
ajaafar@umass

JIARUI LIU
jiaruil@umass

JORDAN PERRY-GREENE
jperrygreene23@amherst

1 Problem Statement and Abstract

In a post-COVID world of breakneck research and
even faster publication, a rare moment of public
fascination is wilting as non-experts struggle to
stay informed on current scientific developments.
The fields of biology and medicine are particu-
larly obtuse to non-experts in this context, with
papers saturated with obscure terminology and re-
quiring extensive background knowledge. These
linguistic restrictions create a high overhead cost
to learning, and to understand the detriment of
such a price, we borrow an analogy from neurosci-
entist Sam Harris. Imagine the field of astronomy
if each person had to build their telescope before
they could even begin to see if astronomy was a
legitimate enterprise; the sky wouldn’t be any less
worthy of investigation, but it would be tremen-
dously more difficult to convince anyone to care
about it.

Scientific papers hold detailed information
about the newest advancements, but three main
roadblocks stand between this source and gen-
eral consumption: paywalls, time to read, and the
aforementioned high overhead cost. While the
first problem is beyond our scope, we attempt to
address the latter two issues. We propose PEGem-
bed, a tool to summarize biomedical papers in
terms that are easier to understand. Through sci-
entific lay summarization, we aim to start building
a telescope anyone can use to stay engaged with
scientific progress.

2 What you proposed vs. what you
accomplished

• We planned to use both eLife and PLOS, but
as it is way too expensive for us to com-
pute with a reasonable budget, we discarded
PLOS and decided to stick exclusively to
eLife.

• We considered using some of the PreSumm
models but ultimately decided against them
for a couple of reasons. Any of the extractive
models are immediately out of the question
because our dataset did not have ground-truth
extractive summaries. Additionally, their
models were trained on news datasets, so
their preproprocessing code was built specif-
ically for that type of dataset. Since our
dataset was medical and of a different struc-
ture, that meant some of that code was un-
usable. In place of PreSumm, we adopted a
method proposed by Zhiheng Wang that em-
ploys the ’topK’ cosine similarities for ex-
tractive summarisation. This approach aligns
well with our dataset and provides effective
results. Further details about this method and
its implementation can be found in Section
6.1.

• We opted not to utilize the BERTSum for
the extractive method, for reasons outlined in
Section 9. Instead, we developed and imple-
mented our own unique approach, and it is
introduced in section 6.1.

• We proposed using COMET as one of our
evaluation metrics, but instead chose to use
METEOR. COMET was made to be used
more for conversational tasks. METEOR on
the other hand, is designed to capture seman-
tic similarity and accuracy, which are crucial
aspects in evaluating the quality of medical
summaries. Its focus on content accuracy and
semantic matching makes it more suitable for
assessing the quality and alignment of medi-
cal article summaries.

3 Related work

The introduction of the attention mechanism and
transformer model in the paper ”Attention is all



you need” introduced a new approach to text sum-
marization. Since then, people are exploring to
find a model that is able to summarise complicated
datasets with easy-to-understand words. The TED
model introduced in 2020 (Yang et al., 2020) is
a method that is able to generate summaries ac-
curately and concisely. TED has the potential to
summarize biomedical papers, even though it is
not trained specifically on those datasets.

Another reputable model, BERT, as introduced
by Devlin et al. (Devlin et al., 2019) is a
pre-trained bidirectional transformer designed for
language understanding, allowing for easy fine-
tuning for various applications. An excellent ex-
ample of a BERT-based model is the BERTSum
model (Liu, 2019), which has been particularly
successful when fine-tuned on the CNN/Daily
Mail dataset. These models have been increas-
ingly utilized to summarise intricate papers within
the biomedical field.

In 2021, Du (Du et al., 2020) proposed a strat-
egy that leverages BERTSum. They fine-tune it on
biomedical scientific papers to attain effective ex-
tractive summarization. The role of eLife, a lead-
ing dataset for biomedical papers, has been instru-
mental in this context. It provides a substantial
corpus that researchers use for generating sum-
maries and, going a step further, lay summaries.

A paper titled Making Science Simple: Cor-
pora for the Lay Summarisation of Scientific Lit-
erature (Goldsack et al., 2022) highlighted the
use of PubMed-BART, a pre-trained sequence-to-
sequence model (Lewis et al., 2019). This model,
when fine-tuned on scientific datasets, is capable
of generating lay summaries for given papers, en-
hancing the accessibility of scientific literature.
This paper made us aware that one requirement for
summarization is that it should be easy to under-
stand. Thus, it is worth it to look into some re-
lated work that focuses on ”lay summarisation.”
In Seungwong Kim’s paper Using Pre-Trained
Transformer for Better Lay Summarization”(Kim,

Figure 1: How PEGASUS works. Credits: Google

2020), he uses the PEGASUS abstractive capa-
bilities to generate lay summaries, and lengthens
them by appending sentences extracted from the
Presumm models (Liu and Lapata, 2019).

The PreSumm models utilize both abstractive
and extractive summarization techniques. The ab-
stractive model uses BERT as the encoder and
a randomly-initialized Transformer for the de-
coder. The extractive model “is built on top of
this encoder (BERT) by stacking several inter-
sentence Transformer layers to capture document-
level features for extracting sentences.” The BERT
used is not the original architecture, but rather
BERT made specifically for summarization, called
“BERTSUM.”

BERTSUM outputs vectors for sentences rather
than tokens. The extractive model is called BERT-
SUMEXT. The abstractive model is called BERT-
SUMABS. They experiment with the BERT-
SUMEXT and BERTSUMABS models separately
and get results. Additionally, they combine these
two models by first fine-tuning the encoder on
the extractive task and then on the abstractive
task. This two-stage approach uses extractive
objectives to boost the abstractive summariza-
tion performance, utilizing information shared be-
tween the two tasks. This model is called BERT-
SUMEXTABS.

We seek to improve aspects of Kim’s approach,
in both the method of combination and more com-
prehensive evaluation metrics.

In Kim’s approach above, we can see that re-
searchers use abstractive summarisation to achieve
the goal of ”lay-summarization”. PEGASUS
is a state-of-the-art pre-trained transformer-based
encoder-decoder abstractive summarization model
with extracted gap sentences for abstractive sum-
marization introduced by Zhang, Zhao, Saleh, and
Liu (Zhang et al., 2020). PEGASUS masks en-
tire sentences and asks the model to predict these
”gap” sentences in the context of the remaining
text, as seen in Figure 1. However, as discussed in
(Phang et al., 2022), the asymmetry between the
input length and summary lengths requires new
considerations regarding the resource limitations
of the models.

BigBirdPegasus (Zaheer et al., 2021) is a variant
of PEGASUS. The main difference between Big-
BirdPegasus and Pegasus models is that BigBird-
Pegasus uses a sparse attention mechanism, while
Pegasus does not. Sparse attention allows Big-



BirdPegasus to process longer sequences of text
than Pegasus. Thus the model can process more
for the same amount of memory. In addition, Big-
BirdPegasus also applies global attention as well
as random attention to the input sequence, which
further improves its performance on long-range
summarization tasks.

One version of BigBirdPegasus is bigbird-
pegasus-large-pubmed, which is a larger (more pa-
rameters) version of BigBirdPegasus that was fine-
tuned on the PubMed dataset. At first, we fine-
tuned this model on our dataset, eLife, but then
realized that the PubMed dataset already includes
eLife. This led us to abandon bigbird-pegasus-
large-pubmed.

With the analysis above, we decide to develop
our own tool mainly focused on biomedical paper,
and use the combination of the extractive and ab-
stractive methods, which will be shown below.

4 Your dataset

4.1 Dataset Introduction

eLife, a non-profit organization, aims to revolu-
tionize scientific publishing by creating a platform
for research communication that promotes ethical
and responsible behaviors in science. Through its
open-access journal, eLife publishes a wide spec-
trum of research, ranging from foundational the-
oretical work to applied and clinical studies in
life sciences and biomedicine. Each article not
only contains the original research but also in-
cludes an editor’s summary, providing layman’s
term abstracts. These summaries serve as an ex-
cellent ground truth for abstractive summarization.
Given our objective to develop a high-performing
lay-summarization model for biomedical papers,
eLife’s comprehensive dataset, complete with re-
search articles and their summaries, provides an
ideal foundation for our project.

4.2 Dataset Structure

Our dataset comes from Goldsack et al.’s paper
Making Science Simple: Corpora for the Lay Sum-
marisation of Scientific Literature (Goldsack et al.,
2022). Goldsack et al. construct a database con-
taining the eLife dataset, with papers and its cor-
responding layman’s term abstract. The dataset is
stored in a JSON file.

Figure 2: JSON format

In the provided format, ”sections” is a two-
dimensional array where the outer array repre-
sents each paper and the inner array represents
each section of the paper, excluding the abstract.
Each inner array is a list of sentences in the re-
spective section. Following that, ”headings” is
a list of the names of the sections in the pa-
per, excluding the abstract. ”abstract” is a list
of sentences in the abstract section of the pa-
per. ”summary” is a list of sentences in the lay
summary provided by the editor. Lastly, ”key-
words” is a list of tags for the paper. Regard-
ing the data files, you mentioned the availability
of ”train.json,” ”val.json,” and ”test.json” in the
eLife.zip file. However, for cost-related reasons,
only ”train.json” and ”test.json” are utilized. Ap-
proximately 4331 papers from ”train.json” were
used for training and validation, while 241 papers
from ”test.json” were used for testing.

For extractive and abstractive summarization,
we primarly use the ”sections” field, while the
”summary” field serves as the ground truth for
evaluation. After we generate our own summary,
we create a new ”key: value” pair with key named
as our summarization method and value as our
summarization results.

5 Baselines

5.1 LeadK-Synonyms

LeadK as an extractive summarisation method is
commonly used as a baseline in research focused
on summarization. The basic premise of leadK is
that the most crucial sentences typically appear at
the beginning of the paper. To tailor leadK more
effectively to our needs, we propose a modified
version: leadK-Synonyms.

This method comprises two steps. The first step
adheres to the traditional leadK approach. Our



analysis of sentence distribution across paper sec-
tions suggested that selecting the top five sen-
tences (if available) from each section provides an
extensive coverage of the paper’s content. In the
second step, we utilize synonyms and hypernyms
to replace less common words, referencing Prince-
ton’s WordNet (University, 2010). The motivation
behind this step is to make our summary more ac-
cessible to non-specialist readers.

5.2 GPT-3.5

Our GPT-3.5 method is chosen as as an upper
bound, and relies on OpenAI’s model text-davinci-
003. GPT-3.5 was picked as a massive and pow-
erful state-of-the-art model with a very large to-
ken window of 4,097 tokens and cheap and fast
API access. It fits our task better than the other
three available GPT-3.5 models: text-davinci-002,
code-davinci-002, and gpt-3.5-turbo for various
reasons. text-davinci-002 was trained with super-
vised fine-tuning instead of reinforcement learn-
ing, limiting novelty and adaptability. code-
davinci-002 and gpt-3.5-turbo are inferior for lay
summarization as they are optimized for code and
chat capabilities respectively. GPT-3.5’s large to-
ken window is ideal, and even with such a large
window nearly all papers exceeded this by a very
large margin. To generate our summaries, we
split the paper into chunks of ”words” – the sets
of characters that arise when we split on whites-
pace. We take 2500 words, rounded to the near-
est sentence, with 2500 being experimentally de-
termined to be the upper limit for the input size.
We iteratively tested various prompts until iden-
tifying the following prompt as yielding suitable
outcomes, letting chunk text be the text from our
2500-word chunk and reply summary be the con-
catenated summaries of previous chunks.

Briefly summarize the
following in simple terms:
\n{chunk_text}\n
Summary:{reply_summary}

This prompt is passed into text-davinci-003
with a temperature of 0.7. The discrepancy
between text-davinci-003’s maximum token al-
lowance of 4097 and the upper limit of 2500 words
is due to multiple factors. First, OpenAI’s tok-
enization strategy is likely different than the sim-
ple whitespace split we employ. Second, addi-
tional tokens are required for the text included in
every prompt. Finally, we require sufficient token

space for all summaries of previous chunks to be
appended to the prompt.

Our method of prompting GPT-3.5

5.3 Non-Fine-Tuned PEGASUS-X Baseline

To contextualize the performance of our fine-tuned
PEGASUS-X models, we included the non-fine-
tuned PEGASUS-X as a baseline in our compar-
isons. Given the specific demands of our summa-
rization task—summarizing biological papers in
the eLife dataset—we did not anticipate that the
non-fine-tuned model would yield exceptional re-
sults.

Biological papers often contain highly special-
ized and technical language that requires a deep
understanding of complex, interrelated biological
processes and concepts. Furthermore, these pa-
pers typically adhere to a specific structure that
may be challenging for a model to navigate with-
out domain-specific fine-tuning. Hence, we used
this non-fine-tuned model as a baseline to under-
score the improvements offered by fine-tuning.

We utilized the non-fine-tuned models
‘google/pegasus-x-base‘ and ‘google/pegasus-x-
large‘ directly from Huggingface’s Transformers
library. To generate output summaries, we passed
our dataset through these models without any
preliminary fine-tuning. We then evaluated the
performance of these models using our own
machine evaluation code, result can be found in
section 7. This straightforward implementation al-
lowed us to obtain baseline performance metrics,
against which we could measure the effectiveness
of our fine-tuning efforts.

6 Our approach

Motivated by the paper written by Kim Seung-
won (Kim, 2020) which was discussed in the re-
lated work section, we decided to develop our own
method by trying extractive summarization first
then abstractive summarization.

The underlying premise of this approach is
that a long extractive summary, even of this lim-
ited length, should encapsulate the majority of
the critical information within the original docu-
ment. Consequently, we hypothesize that these
summaries should provide a sufficient foundation
from which to generate reasonable and contex-
tually accurate abstractive summarizations. This
methodology allows us to leverage the strengths
of our model while remaining cognizant of our re-



xbase1 xbaseFull xLarge1 xLargeFull
#Params 272M 272M 568M 568M
Batch Size 5 5 5 5
Block Size 1024 1024 1024 1024
learning rate 4e-5 4e-5 5e-5 5e-5

Table 1: Hyperparameters of our fine-tuned model

source limitations.
Operating within the constraints of a limited

budget and computing resources, we have strate-
gically tailored our approach to extractive summa-
rization. We have set a cap of approximately 800
words for the extractive summaries to balance in-
formation retention with computational efficiency
in fine-tuning step.

Subsequently, these long extractive summaries
serve as input for fine-tuning our abstractive sum-
marization model. The ground truth for this stage
is provided by human-written summaries from the
dataset. (The result part is offered in section 7.1)

Unfortunately, we won’t be able to compare our
results with theirs because their dataset is different
from ours. There won’t be consistency for us to be
able to do comparisons.

6.1 Extractive Section:
The extractive phase of our methodology is criti-
cal, yet challenging due to the absence of ground
truth for extractive summarization in our dataset.
Given the scale of our dataset, generating this
human-written ground truth is impractical.

Nevertheless, we have designed robust extrac-
tive methods that provide beneficial inputs for the
abstractive phase. Preliminary evaluations indi-
cate promising outcomes for the abstractive sum-
maries generated from our extractive summaries.

6.1.1 Top K Sentence Cosine: the method
that we used

Our first proposal for extractive summarisation
draws inspiration from Reimers and Gurevych’s
work (Reimers and Gurevych, 2019). The author
proposed a method to obtain sentence embeddings
by modifying the pre-trained BERT model. These
sentence embeddings can be compared using co-
sine similarity to find sentences with similar mean-
ings. We used this to obtain the most important
sentences in the paper, which leading to the devel-
opment of the “Top K Sentence Cosine” method.
This approach hinges on the computation of sen-
tence embeddings for every sentence in a given

scientific paper, employing the “all-MiniLM-L6-
v2” model for this purpose. This model maps sen-
tences & paragraphs to a 384 dimensional dense
vector space and can be used for tasks like cluster-
ing or semantic search. However, as stated before,
we failed to find any the ground truth for the ex-
tractive summarisation on any biomedical dataset,
thus, we are unable to fine-tune the sentence-bert
model. Therefore, our sentence-bert used default
values. Luckily, our generation proved to be effec-
tive in later processes.

We then compute cosine similarities between
these embeddings, aiming to identify sentences
with semantically similar meanings. Our underly-
ing hypothesis is that the importance of a sentence
is directly proportional to its frequency of occur-
rence (albeit in varied forms) within the paper. In
essence, sentences encapsulating the most signifi-
cant insights are likely to be paraphrased or reiter-
ated in some form, and their corresponding words
should hold substantial weight within the overall
paper.

To generate an extractive summary for each pa-
per, we select the top ’k’ sentences with the high-
est cosine similarities, while retaining their origi-
nal sequence from the text. This ensures that our
summarisation captures the most critical content
and maintains its contextual continuity.

Balancing between the computational cost and
summarisation efficacy (we are using A100 GPUs
from colab), we set ’k’ to 20 for our experi-
ments. Given that the average number of sen-
tences in a paper is roughly 300 (we ran our code
from train.json and test.json), our choice of ’k’ en-
capsulates around 10% of the total input length.
This proportion provides a satisfactory and cost-
effective coverage for the extractive summarisa-
tion stage, efficiently distilling the most relevant
and insightful content from each paper.



6.2 Abstractive Summarization Method:
Pegasus-X

In our work, we opted to utilize PEGASUS-X
(Phang et al., 2022) (an extension of PEGASUS)
as our abstractive summarization model for sev-
eral compelling reasons. Firstly, PEGASUS has
demonstrated superior performance across a mul-
titude of datasets and summarization tasks, show-
casing its proficiency in generating high-quality,
human-like summaries. Secondly, PEGASUS-X
offers a significant improvement over its predeces-
sor by having the capacity to handle inputs of up
to 16K tokens, compared to the original PEGA-
SUS’s limit of 512 tokens. Lastly, one of the key
strengths of PEGASUS is its ability to achieve ac-
ceptable performance without requiring an exten-
sive number of examples for fine-tuning, which is
wonderful with our limited resources.

Id Model # examples
xbase1 PEGASUS-XBase 2000
xbaseFull PEGASUS-XBase 3515
xLarge1 PEGASUS-XLarge 2000
xLargeFull PEGASUS-XLarge 3515

Table 2: the 4 model we fine-tuned

Guided by these factors, we undertook the
process of fine-tuning 2 distinct versions of the
PEGASUS-X model each utilizing 2 different
number of training examples. The fine-tuning
process remained consistent across all four mod-
els. The model-specific hyperparameters for fine-
tuning can be found in below table 1.

We initially fine-tuned the PEGASUS-XBase

model, labeled as ‘xbase1/Pegasus X base 2k‘,
using 2000 examples of the long extractive sum-
mary we got from the TOP K Sentence Co-
sine method. Following this, we further ex-
panded the training examples to 3515 for a second
PEGASUS-XBase model, referred to as ‘xbase-
Full/Pegasus X base 4k‘.

Turning our attention to the larger PEGASUS-
XLarge architecture, we once again started with
a set of 2000 examples to fine-tune a model
we labeled ‘xLarge1/Pegasus X large 2k‘. Sub-
sequently, we fine-tuned a second PEGASUS-
XLarge model, ‘xLargeFull/Pegasus X large 4k‘,
using the larger dataset of 3515 examples.

This methodical approach was adopted to in-
vestigate the influence of varying parameters and
training data quantities on the performance of the

models. Both sets of training data consisted of
long extractive summaries paired with human-
written ground truths, drawn from half of the elife
dataset and 81 parent of the elife datasets respec-
tively.

Our choice of hyperparameters was primarily
guided by our computational resources and the
characteristics of our dataset. We had access
to an A100 GPU with 40G of memory for the
PEGASUS-XBase model and an A100 GPU with
80G of memory for the PEGASUS-XLarge model
at AutoDL platform. Given these resources, we set
the batch size to 5 for both models to ensure that
the computations fit within the available memory.

The block size was set to 1024 tokens. This de-
cision was made based on our hypothesis that an
extractive summary of approximately 800 words
would be sufficient to capture the most important
information from the original paper. A block size
of 1024 also helped us maintain a balance between
summary detail and computational efficiency.

Considering the size of the eLife dataset we
were working with, we decided to use a lower
learning rate than that used in the original
PEGASUS-X paper. The original paper utilized a
learning rate of 8e-4, but given the relatively small
size of our dataset, we opted for rates of 5e-5 and
4e-5 instead. This decision was made to prevent
the potential for overfitting that could arise from
using a higher learning rate with a smaller dataset.

6.3 Resource used

Our fine-tuning process leverages the models
available in Huggingface’s Transformers library, a
well-regarded resource in the NLP community for
its efficient and effective transformer-based mod-
els. This library provided us with a solid founda-
tion for our work with the PEGASUS-X models.

To craft our fine-tuning script, we took in-
spiration from the work of @jiahao87. His
script, ‘pegasus fine tune.py‘, served as a valu-
able starting point for our own fine-tuning
process. The script, publicly available at
https://gist.github.com/jiahao87/
50cec29725824da7ff6dd9314b53c4b3,
provided a roadmap for implementing our own
fine-tuning procedures with the PEGASUS-X
models.

Our work used a diverse range of comput-
ing resources for different stages of the project.
For the fine-tuning and evaluation of the abstrac-

https://gist.github.com/jiahao87/50cec29725824da7ff6dd9314b53c4b3
https://gist.github.com/jiahao87/50cec29725824da7ff6dd9314b53c4b3


tive summarization models, we relied on the Au-
toDL platform. We utilized an A100 GPU with
40G of memory for the PEGASUS-XBase model
and an A100 GPU with 80G of memory for the
PEGASUS-XLarge model.

For the Top K Sentence Cosine extractive sum-
marization method, we employed an A100 GPU
with 40G of memory GPU available on Google
Colab. A locally-hosted RTX 3080 GPU and
Google Colab’s T4 GPU were also instrumental
in data formatting tasks.

Finally, for the evaluation of all base models,
we utilized an A100 GPU with 40G of memory at
Google Colab. This diverse and flexible combina-
tion of resources was vital in allowing us to effi-
ciently and effectively manage the various compu-
tational demands of our project.

7 Error Analysis

Given the context of text generation, it is pru-
dent to thoroughly examine both machine eval-
uation and human evaluation. The inclusion of
human evaluation is particularly valuable due to
the current lack of a robust mechanism for assess-
ing machine-generated paragraphs or passages at a
comprehensive level (Karpinska and Iyyer, 2023).
By incorporating both perspectives, a more com-
prehensive and insightful assessment of the gener-
ated text can be attained.

7.1 Machine Evaluation

7.1.1 Metrics
Our deliberations have led us to the adoption of a
tripartite approach, employing three distinct met-
rics, namely ROUGE (Lin, 2004), BERTScore
(Zhang et al., 2020), and METEOR (Banerjee and
Lavie, 2005). This selection represents a judicious
fusion of both non-learning-based and learning-
based metrics, rendering it particularly well-suited
for the task of summarization.

ROUGE, an established evaluation measure,
has garnered significant recognition within the
natural language processing community. It lever-
ages overlap between the generated summary and
reference summaries, employing a variety of n-
gram co-occurrence statistics to assess the qual-
ity and effectiveness of the summary. Specifically,
we utilized ROUGE-1, ROUGE-2, and ROUGE-
L. The reason we used the first two is due to them
being a standard, often used anytime ROUGE is
used. On the other hand, ROUGE-L, which stands

for Longest Common Subsequence (LCS), mea-
sures the longest subsequence of words shared by
the generated summary and the reference sum-
maries. It accounts for word order and sentence
structure, making it particularly well-suited for
capturing the summary’s overall coherence and
capturing the main ideas expressed in the source
text. ROUGE-L is especially beneficial in sum-
marization tasks where maintaining the original
meaning and organization of ideas is crucial.

BERTScore, on the other hand, is a state-of-the-
art metric that capitalizes on contextualized word
embeddings. By utilizing contextual information,
BERTScore can capture semantic similarities be-
tween the generated summary and the reference
summaries with greater accuracy, resulting in a
more nuanced evaluation.

Lastly, METEOR offers a unique approach to
summarization evaluation by incorporating a com-
bination of precision, recall, and alignment-based
metrics. It incorporates a rich set of linguistic and
semantic resources, enabling a comprehensive as-
sessment of the generated summary’s overall qual-
ity.

The choice to employ this trichotomy of met-
rics stems from our desire to obtain a holistic
and multidimensional evaluation of the summa-
rization task. By leveraging both traditional statis-
tical approaches and cutting-edge learning-based
techniques, we aim to capture diverse facets of
summary quality, thereby facilitating a more com-
prehensive analysis and interpretation of the gen-
erated summaries.

7.1.2 Analysis
As depicted in Figure 3, the comprehensive eval-
uation table showcases the inclusion of metrics
at the top, while the models, alongside the ab-
stracts, are presented along the left axis. It may
raise curiosity as to why the abstracts are included
in the evaluation. The rationale behind this de-
cision stems from the fact that an abstract inher-
ently serves as a condensed summary of the cor-
responding paper. Consequently, considering the
abstracts for comparison purposes contributes to a
more comprehensive and exhaustive assessment.

Among the metrics employed, namely
BERTScore and METEOR, it is noteworthy
that the baselines exhibited superior performance
compared to our fine-tuned models. Notably, the
margin of victory for BERTScore was minimal,
with PEGASUS-X-Large-4k narrowly trailing



Figure 3: Machine Evaluation Metrics. Underlined are the best models for each metric.“nf” =“non finetuned”

by a mere 0.01. The suboptimal performance
of the baselines could potentially be attributed
to inadequate hyperparameter tuning of the
BERTScore model. Furthermore, in the case
of BERTScore, we might have used an inferior
BERT model for our task, RoBERTa, when
instead we could have maybe used a different one
such as bert-base-uncased for example.

On the other hand, our fine-tuned models either
matched or surpassed the baselines in three out
of the five metrics, namely ROUGE-1, ROUGE-
2, and ROUGE-L, with ROUGE-1 exhibiting the
most significant discrepancy. One plausible expla-
nation for the superiority of our fine-tuned models
in terms of ROUGE lies in the abstractive nature
of PEGASUS. Theoretically, PEGASUS has the
propensity to generate a greater number of com-
monly used terms within its summaries. It may be
argued that GPT-3.5, too, possesses the capacity
to generate such terms. However, a distinguish-
ing factor contributing to our models’ triumph,
particularly over a baseline like GPT-3.5, is the
fine-tuning process. By customizing our models
on medical data, they acquired the ability to gen-
erate medical terms that align more closely with
the reference summaries. Consequently, more of
the terms in the reference summaries would be in
the generated summaries, thus resulting in higher
ROUGE scores. Additionally, it is logical that the
abstract achieved a high ROUGE score, given that,
by definition, it incorporates terms and words ex-
tracted directly from the corresponding paper.

The poorest-performing model by a substantial
margin was PEGASUS-X-Base-Non-Finetune.
This can be attributed to its inherent nature as a

base model, its relative scare number of parame-
ter, coupled with the absence of fine-tuning on our
medical dataset.

Conversely, the most exemplary model in terms
of performance emerged as PEGASUS-X-Large-
4k, which can be attributed to several factors.
Firstly, it boasts the highest number of parame-
ters, thereby endowing it with enhanced expres-
sive capabilities. Secondly, its training data en-
compassed a more extensive corpus, consisting of
approximately 4,000 papers. Lastly, and perhaps
most crucially, it underwent a meticulous fine-
tuning process tailored specifically to our medical
dataset. Collectively, these factors contributed to
its remarkable performance and overall superior-
ity among the evaluated models.

7.2 Human Evaluation

Ten models were scored across 40 papers and eval-
uated on each of the four metrics: three scalar, and
one ranking. Figures 4 and 5 display the average
scores for each model on our scalar and ranking
metrics in terms of the mean and median. The
first major note is that the ground-truth summary,
the abstract, and the GPT-3.5 baseline are virtually
identical, with the only meaningful difference be-
ing a drop in lay readability in the abstract. This
drop is expected as the abstract generally summa-
rizes for an expert audience, and contains techni-
cal terms that explored in the paper without us-
ing space to explain them. The similarity between
these three is striking, and the fact that human
evaluators preferred these options nearly equiva-
lently is a testament to both the inherent summar-
ative quality of the abstract and the power of the



Figure 4: Human Evaluation Scores (median). “nf” =“non finetuned”

GPT-3.5 method we employed.

A notable outlier of the poorer baselines is the
non-fine-tuned xBase model, which scored the
lowest score in every metric, in every human eval-
uation. This was a result of its ”summaries” being
unreadable messes of punctuation and/or a simple
repetition of the same word. Lead-K and non-fine-
tuned xLarge performed better, but found poor
metrics across the board, suffering especially in
Lay Readability and Is Summarizing respectively.
Lead-K’s poor performance in Lay Readability is
likely due to the complex terms throughout the
original papers. The non-fine-tuned xLarge model
struggles with a deficit in grammar, and combined
with its poor understanding of the task results in
poor summarative capabilities. This model also
tended to start with decent summary content, but
then devolve into repeating variations of a similar
sentence or sentence fragment until it returned.

More interesting is the performance of our fine-
tuned models. Increasing the fine-tuning set and
boosting the model size from Base to Large im-
proved performance both for Sensical and Is Sum-
marizing scores, but made little change to Lay
Readability. Human evaluators vastly preferred
the xLarge 4k model to the other fine-tuned mod-
els. While not reaching the same sensical ca-
pabilities as the peak baselines, the fine-tuned
PEGembed models stayed competitive in terms of
summarative ability and drastically outperformed
other models in terms of lay readability. Addi-

tonally, human evaluators consistently favored all
fine-tuned PEGembed models over the baselines
of Lead-K and their non-fine-tuned counterparts.

7.2.1 Evaluator Guidelines
Summaries will be evaluated based on three dis-
tinct scales: Sensical, Is Summarizing, and. Lay
Readability.

• Sensical Scale:

1: Unreadable/incomprehensible.
2: Contains fragments of correct grammar

or sentences, but very hard to parse
meaning.

3: Sections of readable, directed text, but
contains major, obvious errors.

4: Multiple sections of readable, directed
text, but contains minor errors in gram-
mar or meaning.

5: Excellent, error-free grammar.

• Is Summarizing Scale:

1: Replacement for N/A, i.e., grammar
makes it basically impossible to under-
stand what’s going on.

2: Not trying to summarize/looks like a
straight extract from the original paper.

3: Condenses a concept, but either goes
into detail or makes no effort to summa-
rize elsewhere in the summary.

4: Makes a meaningful effort to summarize
throughout.



Figure 5: Human Evaluation Scores (mean). “nf” =“non finetuned”

5: Presents condensed and concise infor-
mation.

• Lay Readability Scale:

1: Not many readable words, Replacement
for N/A, i.e., not many real words.

2: Uses lots of complex language. Essen-
tially the original paper using full com-
plex terms.

3: Contains several complex terms, but not
an excessive amount.

4: Few complex terms, or meaningful at-
tempt at context and explanation for the
majority of the complex terms used.

5: Complex terms minimized, with context
given for the ones used.

In each scale, a higher number equates to a bet-
ter summary. Summaries should aim for a ’5’ in
each category for the highest quality.

All summaries for a given paper will be com-
pared to each other in a ranking categorization as
well. Rank the following summaries based on how
well an understanding of the original paper they
conveyed to you, a non-expert. Traits such as the
ones in the scalar categories above should be con-
sidered. Additional considerations should include
how much you feel the summary respected your
time and explained clearly and concisely, as well
as whether it went into uninteresting or unneces-
sary detail. This ranking is intended as an overall
assessment of quality, and your answer need not

rely on the numbers you provided above. Rank
favorable summaries as a higher number than un-
favorable summaries.

7.3 Guideline Reasoning
The guidelines are selected for the overall goal of
judging quality of a lay summarization. ”Sensical”
is created as an assessment of grammar and cohe-
sion, to compare the model to human-written text
that isn’t necessarily summarative. ”Is Summariz-
ing” is intended to gauge how much of a summary
it is, while ”Lay Readability” is meant to judge
how approachable that summary is for a layper-
son. The final ranking was performed across the
ten summaries of a given paper, and was meant to
be a subjective preference towards a given sum-
mary. While the first three were intended towards
drawing objective conclusions about the quality of
the summaries in a vaccuum, the final ranking was
meant to relate the papers to each other.

8 Contributions of group members

List what each member of the group contributed to
this project here. For example:

• Zhiheng Wang:

1. Research on extractive summarization
(bertSum, sentence-bert, leadKSyn-
onym)

2. write
(a) Section 2
(b) Section 3 before preSumm



(c) Section 4, find the dataset and mod-
ify the dataset to our use

(d) Section 5.1
(e) Section 6 before 6.2
(f) README.md on github
(g) Section 9.1

3. all the extractive code

• Ahmed Jaafar:

– Writing

* Some parts of the Related Works
section.

* Some parts of the AI Disclosure sec-
tion

* A large portion of the Machine Eval-
uation section

* Machine Model Evaluations table.

* Some parts of the Proposal vs Ac-
complished section

* Some parts of the Conclusion sec-
tion

* A bit of the Your Approach section

* PEGASUS image
– Summary generation (decoding) code

on the held-out test set
– Deciding which of the evaluation met-

rics to use for our final product
– Machine evaluation code
– Generating some of the machine evalu-

ation code
– Looking into and attempting to get Pre-

Summ code working
– Code to make CSV of all our models

and their respective metric scores
– Human evaluation on 10 examples

• Jiarui Liu:

1. Research on abstractive summarization
(specifically, PEGASUS)

2. write
(a) section 5.3 non-fine-tuned Pegasus-

X Baseline
(b) part of introducing at section 6

”Your approach”
(c) section 6.2 ”Abstractive summariza-

tion Method: Pegaus”
(d) section 6.3 ”Resource used”

3. write our fine-tuned script for Pegasus-
X and some data formatting code

4. fine-tune 4 Pegasus-X model on server
and do the evaluation with code from
Ahmed

• Jordan Perry-Greene:

1. Research:
(a) prior methods of combining summa-

rization methods with each other
(b) evaluation methods and metrics

2. write
(a) Problem Statement and Abstract
(b) Some parts of Related Work
(c) GPT-3.5 baseline
(d) Human Evaluation Error Analysis
(e) Evaluator Guidelines
(f) Guideline Reasoning

3. All GPT-3.5 baseline code
4. All human evaluation code

‘

9 Conclusion

9.1 Discussion

Given the expansive dataset associated with our
project, processing it presents significant compu-
tational and financial challenges. Pre-processing
is particularly challenging because we lack spe-
cific knowledge for tokenization, which is criti-
cal for biomedical papers. We’ve attempted to
find guidance online, but most resources have not
proven helpful due to our lack of a biological
background.

We opted for the LeadK method as our baseline
approach. This traditional method serves as a re-
liable baseline for extractive summarization. We
augmented the summaries with synonym replace-
ments for uncommon words to make them more
accessible, though as expected, the performance
was modest. As an additional layer, we utilized
GPT for abstractive summarization, which yielded
excellent results.

For extractive summarization, we devised our
own cost-effective method: topK Sentence Em-
bedding Cosine Similarity. This method offers a
feasible alternative to the BertSum model.

Although we attempted to use the BertSum
model for extractive summarization on 750 results
from train.json, the cost per paper was consider-
ably higher than our in-house method. Further-
more, initial test results showed minor differences



Figure 6: PEGembed sample summary.

Figure 7: Ground-truth sample summary.

between the two methods. However, we will in-
clude the code for the BertSum version and the
dataset in our submission for your perusal.

Despite operating under the constraints of lim-
ited resources and datasets, our fine-tuned model
demonstrated its capacity to generate satisfying
abstracts from extensive scientific papers in the
biological domain. It outperformed the base-
line model across all evaluation metrics, including
ROUGE, BertScore, and METEOR. Notably, its
readability and accessibility were on par with the
advanced GPT-3.5 method and human-authored
ground truth.

We recognize that our model occasionally pro-
duces repetitive content. To address this, we sug-
gest the acquisition of more data and further fine-
tuning of the model. The introduction of a repe-
tition penalty during testing could further enhance
the model’s performance.

The significance of our project is underscored
by its ambitious aim: to create concise summaries
of extensive documents within a resource-limited
environment. This endeavor has led to consider-
able progress in the field, showcasing the potential
of our approach. Our approach can definitely be
expanded upon with further work and research.

9.2 Future work

If we were to continue working on our project in
the future, we would try to get PreSumm working.
We would try to use PreSumm’s extractive model
to get extractive summaries that can then be fed
into PEGASUS (abstractive). In order to be able
to do that, we would need to switch to a differ-
ent dataset that has both extractive and abstractive

ground-truths. Another thing we would try is to
hyperparameter tune BERTScore further and bet-
ter figure out which version of BERT to use for
it.

10 AI Disclosure

• Did you use any AI assistance to complete
this proposal? If so, please also specify what
AI you used.

– Yes, ChatGPT

If you answered yes to the above question, please
complete the following as well:

1. Give me some example a human evaluation
guideline for abstractive summary

2. Given a sentence, please replace the uncom-
mon words with the most likely synonyms or
hypernyms

3. Can you help me to polish the following para-
graph: ”some paragraph from writing”

4. How do I include JSON format in the latex
file?

5. I want to rank the sentences in the passage, is
sentence Bert a good method for that?

6. Please give me a format that I can use for
README.md

7. what’s PEGASUS-X? relationship from PE-
GASUS

8. Use numpy to pick 100 random indices from
a numpy array



9. Which is better for summarization, ME-
TEOR or COMET

• Free response: For each section or para-
graph for which you used assistance, describe
your overall experience with the AI. How
helpful was it? Did it just directly give you
a good output, or did you have to edit it? Was
its output ever obviously wrong or irrelevant?
Did you use it to generate new text, check
your own ideas, or rewrite text?

1. It was helpful. It generated a guideline
that we were able to build off of.

2. It was helpful. It replaced words with
synonyms and hypernyms.

3. It was helpful. It polished the paragraph
and I tweaked it a bit afterwards.

4. It was helpful. It gave me the exact code
I needed.

5. It was helpful. It supplemented what I
got from lectures and online.

6. It was helpful. It gave me the format as
I needed it.

7. It was helpful. It supplemented other in-
formation from the internet.

8. It was helpful. It directly gave me the
answer. It wasn’t wrong. I used it to
generate the code needed for getting 100
random numbers.

9. It was helpful. It supplemented what I
already knew and other sources like the
lectures. It seemed like a good answer
and it made sense

References
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019).

Bert: Pre-training of deep bidirectional transformers for
language understanding.

Du, Y., Li, Q., Wang, L., and He, Y. (2020). Biomedical-
domain pre-trained language model for extractive summa-
rization. Knowledge-Based Systems, 199:105964.

Goldsack, T., Zhang, Z., Lin, C., and Scarton, C. (2022).
Making science simple: Corpora for the lay summarisa-
tion of scientific literature.

Karpinska, M. and Iyyer, M. (2023). Large language mod-
els effectively leverage document-level context for literary
translation, but critical errors persist.

Kim, S. (2020). Using pre-trained transformer for better lay
summarization. In Proceedings of the First Workshop on
Scholarly Document Processing, pages 328–335, Online.
Association for Computational Linguistics.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed,
A., Levy, O., Stoyanov, V., and Zettlemoyer, L. (2019).
Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehen-
sion.

Liu, Y. (2019). Fine-tune bert for extractive summarization.

Liu, Y. and Lapata, M. (2019). Text summarization with pre-
trained encoders.

Phang, J., Zhao, Y., and Liu, P. J. (2022). Investigating effi-
ciently extending transformers for long input summariza-
tion.

Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sen-
tence embeddings using siamese bert-networks.

University, P. (2010). About wordnet. http://wordnet.
princeton.edu.

Yang, Z., Zhu, C., Gmyr, R., Zeng, M., Huang, X., and Darve,
E. (2020). Ted: A pretrained unsupervised summarization
model with theme modeling and denoising.

Zaheer, M., Guruganesh, G., Dubey, A., Ainslie, J., Alberti,
C., Ontanon, S., Pham, P., Ravula, A., Wang, Q., Yang, L.,
and Ahmed, A. (2021). Big bird: Transformers for longer
sequences.

Zhang, J., Zhao, Y., Saleh, M., and Liu, P. J. (2020). Pegasus:
Pre-training with extracted gap-sentences for abstractive
summarization.

http://wordnet.princeton.edu
http://wordnet.princeton.edu

