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Abstract

Font design poses unique challenges for logographic
languages like Chinese, Japanese, and Korean (CJK),
where thousands of unique characters must be individually
crafted. This paper introduces a novel Vision Transformer
(ViT)-based model for multi-language font generation, ef-
fectively addressing the complexities of both logographic
and alphabetic scripts. By leveraging ViT and pretrain-
ing with a strong visual pretext task (Masked Autoencoding,
MAE) [10], our model eliminates the need for complex de-
sign components in prior frameworks while achieving com-
prehensive results with enhanced generalizability. Remark-
ably, it can generate high-quality fonts across multiple lan-
guages for unseen, unknown, and even user-crafted char-
acters. Additionally, we integrate a Retrieval-Augmented
Guidance (RAG) module to dynamically retrieve and adapt
style references, improving scalability and real-world ap-
plicability. We evaluated our approach in various font gen-
eration tasks, demonstrating its effectiveness, adaptability,
and scalability.

1. Introduction
Designing high-quality fonts is challenging, especially for
logographic languages (e.g., Chinese, Japanese, Korean),
where thousands of unique characters must be manually
created. Existing font generation methods often focus on
a single script or rely on large labeled datasets, limiting
their ability to handle multiple languages and unseen, cus-
tom characters [3, 9, 12, 22].

To address these challenges, we propose a one-shot mul-
tilingual font generation model based on Vision Trans-
formers (ViTs) [6, 10], capable of handling diverse
scripts—including Chinese, Japanese, Chinese (CJK) and
English—as well as user-invented glyphs. By leveraging
ViT-based encoders and decoders, pretrained with a Masked
Autoencoder (MAE) objective, our approach eliminates the
need for intricate architectural tweaks and robustly cap-
tures both global structure and subtle stylistic elements. It

supports handwriting and standard fonts without any ref-
erence character constraints, outperforming prior methods
limited to narrow domains or requiring extensive character
libraries [11, 16, 23, 26].

Additionally, we integrate a Retrieval-Augmented Guid-
ance (RAG) module [5] to dynamically retrieve the most
suitable style references from a known inventory, enabling
the model to adapt to challenging or unusual characters.
Unlike previous approaches that rely on base font references
and fail when such references are unavailable, our model
eliminates this dependency. It accepts any input shape, in-
cluding hand-drawn designs, and demonstrates the capabil-
ity to produce faithful, style-consistent outputs across mul-
tiple languages, including unseen fonts, unknown charac-
ters, and even user-crafted designs. Experiments show that
our ViT-MAE-based system consistently generates high-
quality, style-accurate fonts under one-shot conditions, es-
tablishing a robust foundation for versatile, cross-lingual
font generation.

2. Related Work
Font design presents unique challenges, particularly for lo-
gographic languages like Chinese and Japanese, which re-
quire designing thousands of unique characters individually.
While traditional font development remains labor-intensive,
deep learning has revolutionized automatic font generation.
Early approaches leveraged CNNs and GANs for image-to-
image translation, with pioneering works by Azadi et al. [3]
and Fogel et al. [7] demonstrating success in alphabetic lan-
guages. For logographic languages, models like ”Rewrite”
[18] and ”zi2zi” [19] advanced the field through sophisti-
cated style mapping between character pairs.

Recent research has shifted toward few-shot learning us-
ing GANs and diffusion models, enabling high-quality font
generation from minimal reference characters. Notable ad-
vances include Zhang et al.’s [26] style-content separation
networks and GAN-based frameworks by Li et al. [12],
Wen et al. [21], and Yu et al. [25]. Hayashi et al. [8] pro-
posed GlyphGAN for ensuring style consistency through
independent control of character classes and style vectors.



For unsupervised scenarios, Xie et al.’s [22] DG-Font main-
tained structural integrity without extensive paired datasets,
while Liu et al. [13] introduced FontTransformer for high-
resolution synthesis in few-shot settings.

Parallel developments in handwritten text genera-
tion have emerged, with Pippi et al. [14] introducing
Transformer-based models for handling unseen styles.
MetaScript [23] and Tang et al. [17] achieved superior
style fidelity in Chinese character generation. Recent diffu-
sion models like FontDiffuser [24] and Diff-Font [9] have
demonstrated more stable training and higher fidelity for
glyph-rich languages.

Masked Autoencoding (MAE) [10] has emerged as a
highly effective pretraining strategy for Vision Transform-
ers (ViTs), enabling them to excel in spatial reasoning tasks.
By masking a large portion of input image patches and re-
constructing the missing information, MAE forces the ViT
to learn robust representations of spatial structures and se-
mantic content. This self-supervised approach not only en-
hances the model’s ability to generalize across diverse vi-
sual tasks but also reduces the dependency on extensive la-
beled datasets. For font generation, where intricate spatial
patterns and context relationships are crucial, MAE pre-
training empowers the ViT to understand and synthesize
complex glyph structures effectively.

Hiera, introduced by Ryali et al. [15], demonstrates that
a simple hierarchical ViT pre-trained with MAE can outper-
form vision-specific architectures while reducing computa-
tional complexity. These approaches highlight the growing
utility of ViT-based methods in capturing global context and
long-range dependencies [6, 20]. By integrating MAE-style
pretraining, recent models have effectively bridged the gap
between handcrafted design and scalable, data-driven ap-
proaches [4, 10].

3. Dataset Description
Our dataset looks like something as follows:

Figure 1. From top to bottom are Chinese, Japanese, Korean and
English. The five styles are randomly picked from the total of 308
styles.

We have Korean, Chinese, English and Japanese as the four

languages that we are using in this model and 308 styles in
total. we collected fonts from but not limite to 51 font[1]
and google font[2]. In the pretraining phase, we skipped
Korean. We used total of 154 styles from the other three
language with 800k images for pretrain, with the rest of the
images split to train validation and test in 8:1:1 ratio, mean-
ing around 1M for training and 150k for validation. As dis-
cribed in the dataset section, all the font file have a relative
reference character. In our training phase, we decide to let
the input image has or don’t have the access to the reference
character. Thus, to test our model throughout, we decided
to distributes it randomly to four sets: content font unseen
(20k), content reference character unseen (50k), style refer-
ence character unseen (35k) and style font unseen (80k).

4. Method
4.1. Dataset Preparation and Pretraining

The default VitMAE model is able to take 80*80 images,
however, our initial training shows that the model does not
learn well from such big size. Therefore, we reduce the
size of the model to 24*24, and used the patch size of 16.
Our goal is to pretrain the model with part of our dataset
to let the model learn the encoder and decoder that we
are going to use in the later training. This process also
significantly reduced our learning time, and it is proven
to be capable to reconstruct the font picture and learn its
pattern which we will benefit when used for our encoder
and decoder in the main model.
The original Vit-Mae model have a masked ratio of 0.75,
after some experiment, we realized that this mask ratio
might be too high for some character font pictures because
of its complexity, thus we reduced the mask rate to 0.65.
Below are the two pictures comparing the two mask ratio.

4.2. General Overview

Vision Transformers (ViTs) are well-suited for font image
generation due to their ability to capture both global struc-
tures and long-range dependencies. Since each glyph can be
considered a single-object input of fixed position and size,
the self-attention mechanisms inherent in ViTs enable si-
multaneous modeling of content and style features.

Our approach builds upon a previous bi-encoder archi-
tecture by introducing a transformer-based generator guided
by content and style embeddings. Specifically, we employ
two ViT-based encoders: a content encoder that extracts the
structural features of an input glyph, and a style encoder
that summarizes visual style cues from multiple reference
images. By combining these representations, our generator
produces novel glyphs that retain the original content while
reflecting the target style.

The training objective involves minimizing both recon-



(a) The reconstruction result using the Vit-
MAE-base model with the 0.75 mask ratio, we
can see that the a lot of strokes are not properly
reconstructed

(b) This is the reconstruction result using the
modified mask ratio of 0.65, after 17 epochs,
we can see that the image is pretty well recon-
structed.

Figure 2. The comparison showed that it is necessary to pretrain
the VitMAE model in our dataset. This will help us to start with a
confident encoder and decoder for the main model.

struction errors and perceptual differences between the gen-
erated output and the ground truth. In addition to standard
pixel-wise losses (e.g., L2), we incorporate perceptual met-
rics derived from a pre-trained VGG19 network. This en-
courages alignment with high-level visual features. While
adversarial methods could further enhance realism, our pri-
mary focus is on producing accurate, style-consistent recon-
structions guided by explicit content and style features.

Building on prior work, our goals are:
1. Enhanced Style and Content Feature Extraction: We

refine our architecture and training strategies to improve
the efficiency and fidelity of feature extraction, ensuring
that the model effectively captures both the structural de-
tails and stylistic nuances of glyphs.

2. Improved Multi-Lingual Performance: Since fonts
often must support a variety of scripts, we adapt our
model to handle multi-lingual datasets. This ensures that
it generalizes well to diverse glyph shapes and stylistic
variations.

4.3. Baseline

To benchmark our advancements, we implemented four
baseline models that share a general structure with our main
approach but differ in components:
1. ViT from Scratch (Grayscale) + MSE: A ViT encoder-

decoder from scratch trained on grayscale inputs using
only MSE loss.

2. ViT from Scratch (RGB) + MSE: Similar to the above,
but trained on RGB inputs to utilize color information.
We thought this one will be more computational expen-
sive than the gray scale version, but it turns out they are
nearly the same.

3. Facebook-ViTMAE-base + MSE: A ViTMAE-base

model (from Facebook) serving as encoder and decoder,
with MSE loss guiding reconstruction.

4. Pretrained ViTMAE + MSE: A ViTMAE model pre-
trained on our dataset, retaining MSE as the loss func-
tion.
With the baseline and the main model trained on the

same dataset, the baselines provide reference points against
which we can measure the improvements introduced by our
combined-loss, cross-attention bi-encoder method.

4.4. Main Method – Cross-Attention Bi-Encoder
With Combined Loss

Our core architecture integrates a cross-attention mech-
anism to fuse content and style representations effec-
tively. This approach diverges from simpler additive or
concatenation-based methods by allowing the content em-
bedding (queries) to selectively attend to and incorporate
the most relevant stylistic elements (keys and values) from
the style embedding. Through this targeted interaction, we
ensure that the structural fidelity of the glyph is preserved
while layering on the nuanced aesthetic traits of the desired
style.

The model is built upon a Vision Transformer MAE
(Masked Autoencoder) backbone and comprises three prin-
cipal components:
1. Content Encoder: A ViT-based encoder that processes

the input glyph image, producing a content embedding
representing the character’s structure and global shape.

2. Style Encoder: Another ViT-based encoder, similarly
initialized, processes reference style images to produce
an embedding capturing stylistic attributes such as stroke
thickness, curvature, and texture patterns.

3. Cross-Attention Module and Decoder: The cross-
attention module uses the content embedding as queries
and the style embedding as keys/values, ensuring that
style information is integrated into the content represen-
tation in a controlled, attention-driven manner. A ViT-
based decoder, adapted from the MAE framework, re-
constructs the complete glyph from these fused embed-
dings, compensating for initially masked patches. This
decoder leverages the learned representations to gener-
ate a final image that mirrors the style’s character while
maintaining correct glyph shape.

Choice of Perceptual Layers for Loss Computation

Our combined loss function uses perceptual losses derived
from a pre-trained VGG19 network. We select specific lay-
ers to extract both content and style features, ensuring the
model captures the structural integrity and stylistic nuances
of the target glyph:
• Content Layers (e.g., ‘relu22‘): Mid-level layers of

VGG19 represent more abstract features than the very



Figure 3. Our proposed model utilizes a cross-attention mecha-
nism to guide the fusion of content and style embeddings, enhanc-
ing the flexibility and fidelity of glyph generation. Noted, the pink
boxed RAG module is an add on to our main model. The green
boxed font images are content input, and the orange boxed font
image is style input.

early layers (which primarily capture edges and simple
textures) but are not as abstract as the deepest layers. For
fonts, these mid-level layers are well-suited to capture
the shape and arrangement of strokes and overall glyph
structure, ensuring the output maintains the identity of the
character.

• Style Layers (e.g., ‘relu11‘, ‘relu21‘, ‘relu31‘,
‘relu41‘, ‘relu51‘): Lower-level layers focus on sim-
ple textures and patterns, while deeper layers capture in-
creasingly complex structures. By sampling style features
from multiple layers spanning early to deeper stages,
we glean information about fine-grained textures, subtle
stroke thickness variations, and higher-level aesthetic pat-
terns. This multi-layer approach ensures that style loss
guides the model to produce glyphs that faithfully reflect
the chosen style across a wide range of visual attributes.

Combined Loss Formulation and Rationale

We define a combined loss that balances content fidelity,
stylistic accuracy, and pixel-level precision:

Ltotal = αLcontent + βLstyle + γLMSE (1)

Here, Lcontent and Lstyle are the aforementioned per-
ceptual losses derived from selected VGG19 layers, while
LMSE enforces pixel-level alignment.

From initial experiments, we observed that the raw scales
of these losses differed substantially. If all losses were
weighted equally, the MSE term risked becoming negligi-
ble, and the style cues might not be fully expressed. Since
our primary objective is to perform style transfer, we em-
phasize Lstyle by setting a relatively higher weight β = 0.4
compared to α = 0.1 for content. This ensures that the
model focuses more on recreating the stylistic aspects ac-
curately. At the same time, to maintain relevance for pixel-
level details, we increase γ to 1.0, ensuring that the MSE
term provides a stable, fine-grained anchor for sharpening
edges and ensuring clear glyph boundaries.

Post-Training Refinement with L1 Loss

Following approximately 10 epochs of training with the
combined loss, we introduce an additional short (0.5 epoch)
refinement phase using an L1 loss in place of the perceptual
losses:

Lrefine = ∥Ipred − Igt∥1 (2)

The motivation here is to smooth out residual artifacts,
reduce subtle noise, and clean up the generated glyph im-
ages. L1 loss encourages sparsity in the error, which helps
refine fine details and ensures the final output is both visu-
ally coherent and stylistically faithful.

Retrieval-Augmented Guidance (RAG) Module

To further enhance adaptability, we integrate a Retrieval-
Augmented Guidance (RAG) module for scenarios where
the user already has a set of style references available. In
this scenario, the task input consists of a target content char-
acter and a desired style. The RAG module identifies the
most suitable style reference from the known set and pro-
vides it to the model to generate the desired output.

The central hypothesis is that each character embodies a
subset of the font style, and certain style features may not
be fully represented in the input style reference characters.
Characters with similar content or structure can provide ad-
ditional style information during style transfer. We hypoth-
esize that the retrieval-enhanced method will extract the
most relevant style information from the available ref-
erence set, enabling the transformer model to learn and
replicate the style more precisely and efficiently.

For each style, we use the content encoder to create em-
beddings for each character image and employ FAISS to
build an exact search index.



Key Steps of the RAG Module

1. Embedding Extraction: For each available font style,
we use our model’s content encoder to generate con-
tent representations, which are concatenated to be-
come the embedding. The embedding dimensions is
hidden size × (patch num + 1).

2. FAISS Indexing: We construct an exact search index
for each style using FAISS. The IndexFlatL2 index is
employed to perform similarity searches based on cosine
similarity.

3. Nearest Neighbor Retrieval: Given a new content
glyph and a target style, we compute the glyph’s embed-
ding and retrieve the most similar style references using
nearest-neighbor search with our built embeddings.

4. Font Character Generation: The selected style refer-
ence exemplar is passed to the model, providing addi-
tional context to generate the target character.
The RAG module enhances scalability and flexibility,

while also addressing some hard failure cases by dynami-
cally retrieving style references that complement the con-
tent glyph. This approach, combined with our cross-
attention bi-encoder ViT model and refined loss strategy,
ensures a more robust and versatile glyph generation frame-
work.

5. Benchmark Example – DiffusionFont
Among current state-of-the-art style transfer models, Dif-
fuserFont is the only input-compatible method that we can
feasibly test against. Although its focus is on Chinese char-
acters, comparing our results with DiffuserFont provides a
useful qualitative benchmark.

Figure 4. DiffuserFont captures content but deviates significantly
in style.

While we illustrate with Chinese characters here, later
evaluations consider all four languages in our dataset.

6. Experiment
As discussed in the Methods section, our experimental setup
involves providing the model with a content image, a style

image, and a corresponding ground truth image. The con-
tent and ground truth share the same underlying character,
whereas the style and ground truth share the same stylistic
attributes. Our approach utilizes content and style encoders
derived from a pretrained ViTMAE model, enabling the net-
work to efficiently capture content and style features. The
different loss functions are then applied to balance the con-
tent fidelity, style accuracy, and pixel-level alignment, while
the decoder component, also adapted from the pre-trained
ViTMAE model, aims to reconstruct the target glyph.

6.1. Baseline models

As our baseline model uses the MSE difference between the
ground truth and the generated image for the loss function,
we believe that this is one of the naive ways to compare
the difference between the two images. However, when we
monitored the loss log, we realized that it takes around 3.5
hours to train on four 4090 per epoch and the loss goes down
very slow. The sample results are shown as follows:

Figure 5. In each row, the first image is the content image, the
second image is the style image, the third image is the ground truth
image, and the last image is the generated image. The example is
randomly picked from four testing set.

We used the same content input and style input for the three
models to better compare it. All three models are trained
with 10 epochs. At first glance, we can see that the stroke
widths differ significantly from those in the ground truth.
By examining the circled sections and comparing them to
the corresponding ground truth images, it becomes clear
that these models fail to capture the detailed stylistic ele-
ments we intended them to learn. However, we can see that
the content is well preserved from the content input, thus
MSEs are able to learn the content, but they do not perform
well for transferring styles.

6.2. Bi-encoder Model

We run the same dataset for pretraining, training, validation,
and testing across all models. The test results generated
in the following are five randomly selected images from



the four testing set. Unfortuantely, as english only have 26
characters and 11 styles, we did not have it covered in the
chart, but they are computed in Table 1 and Table 2 below.

6.2.1 Human Evaluation on Single Language Style
Transfer

Figure 6. During the human evaluation, we covered the third col-
umn for the subject to determine the success of the style transfer.
We have shown them 20 comparison in total, this is only an exam-
ple. Because all of the subjects speaks english, so the enlish style
transfer is not used for human evaluation

We recruited six subjects, divided into two groups.
Group 1 (three subjects) spoke Chinese, Japanese, or Ko-
rean, and Group 2 (three subjects) spoke only English. Each
subject rated style transfer on a scale of 0 (no transfer) to 2
(complete transfer).

All three participants in Group 1 rated the transfer as 2,
indicating clear recognition of the intended style. In Group
2, two participants rated it as 2, while one gave a 1, not-
ing difficulty in assessing small strokes. Group 1 mem-
bers mentioned that viewing the characters from a distance
helped confirm successful style transfer, while the Group 2
participant who scored it lower struggled with subtle details.

6.2.2 Cross-Language Style Transfer

Comparing Figures 7 and 8, we see that the bi-directional
setup enables effective cross-language training. Further-
more, our model exhibits robustness beyond that of existing

Figure 7. The input content is Chinese, and the style input
is Japanese hiragana. The generated result closely matches the
ground truth, demonstrating our model’s capability for cross-
language style transfer.

(a)

(b)

Figure 8. Subfigures (a) and (b) show the same Japanese hiragana
content paired with different Chinese style inputs. Both examples
involve unseen content, unseen style, and no direct character ref-
erence.

font transfer methods: it does not require a character refer-
ence for either the style or content input. In contrast, other
approaches cannot produce any output without a referenced
character in their library. In the next section, we further
demonstrate the effectiveness of our model.

6.2.3 Made-Up Content, Unseen Styles, and Handwrit-
ing

Figure 9. The input content is a made-up handwritten word, and
the style input is also an unseen style. As a result, there is no
ground truth reference for this example.

Conventional approaches typically focus solely on either



handwriting style transfer or standardized font transfer and
often require a reference character in their library to produce
any output. Our model, however, handles both scenarios
seamlessly—even when no reference character is available.
As shown in Figure 9, our method successfully interprets
a purely handwritten, invented input and applies an unseen
style, demonstrating its adaptability and robustness.

6.2.4 Numerical Comparison

Table 1 shows that our method attains relatively strong per-
formance under challenging conditions. In contrast, as seen
in Table 3, both DF-Font and CF-Font were trained for sig-
nificantly longer (20k iterations vs. our 10), used a few-shot
rather than one-shot approach, and benefited from more
thoroughly tuned hyperparameters. It is also critical to note
that our evaluation dataset is more difficult than those used
in prior work. Moreover, our model, trained on a dataset of
approximately 2.5 million samples across 308 styles, is sub-
stantially larger than the datasets employed by DF-Font and
CF-Font—ours being more than 50 times their size. Their
training setup required about 15 hours on four V100 GPUs
for full convergence, while our setup, after an equivalent
training duration on four RTX 4090 GPUs, reached only
about 10 iterations due to the substantially larger dataset.
Thus, if given more training time and computational re-
sources, we expect our model’s performance to surpass the
current results. Furthermore, their models cannot generate
characters not present in their reference libraries, whereas
ours excels in generalization and scalability. Despite these
disadvantages, our model’s results are not far behind the
current state of the art, and we are confident that with ad-
ditional training iterations, we will achieve even better out-
comes.

We have not included Diffusion-Font in our comparison.
Although it is also a one-shot method and reports superior
metrics compared to CF-Font and DG-Font in their paper,
our empirical tests indicate that Diffusion-Font cannot con-
sistently perform valid style transfer. Given these observed
shortcomings, we remain skeptical about their reported re-
sults.

6.2.5 RAG Module

The evaluation results of our model with the Retrieval-
Augmented Guidance (RAG) module (Table 2) indicate that
the integration of RAG does not yield improvements across
standard evaluation metrics, including L1 Loss, RMSE,
SSIM, LPIPS, and FID, in unseen font scenarios. However,
subsequent human analysis revealed that RAG effectively
addresses specific failure cases and improves performance
on hard examples, thereby enhancing the model’s usability
and adaptability. This demonstrates that while RAG does
not directly impact traditional quantitative metrics, it plays

a vital role in practical applications by ensuring robustness
and reliability in challenging scenarios.

Figure 10. The target character includes the three-dot ”water” rad-
ical, but the model initially generates the two-dot ”ice” radical.
The RAG module successfully retrieves the correct three-dot radi-
cal and enables the model to produce the desired glyph.

Figure 11. The RAG module resolves errors in generating the
three-dot ”water” radical by retrieving style information from a
known set of characters.

Figure 12. For the challenging task of generating hiragana char-
acters in a Chinese handwriting style, the RAG module retrieves
structurally similar Chinese characters (historically related to the
target hiragana) and produces highly accurate results.

7. Limitations and Future Work
• Handwriting Input Potential: Section 6.2.3 highlights

the ability of our model to generate styles for made-up
characters, showing our model’s potential for handwrit-
ing input. However, due to time constraints, large-scale
investigation was not conducted.

• Expanding Writing Systems: The model demonstrates
strong performance across alphabetic-like scripts (e.g.,
Japanese Hiragana and English) and logographic charac-
ters (e.g., Kanji). Exploring its generalizability to other
writing systems, such as Arabic or historical scripts like
Linear A, would be an intriguing direction.

• Few-Shot Generation: Our model could easily extend to
a few-shot setting by invoking the style encoder multiple
times and averaging the style representation. While this
approach has not been tested, investigating the model’s
performance in a few-shot scenario is an exciting avenue
for future research.



Table 1. Performance metrics across different unseen font scenarios. SS refers to Style Font Unseen, SC refers to Style Reference
Character Unseen, CS refers to Content Font Unseen, and CC refers to Content Reference Character Unseen. The dataset consists of all
four languages. Our method demonstrates robust performance in font generation across multiple languages without requiring knowledge
of input character content or style, highlighting its generalization.

Unseen Settings Metrics

SS SC CS CC L1 Loss ↓ RMSE ↓ SSIM ↑ LPIPS ↓ FID ↓

✓ × × × 0.18697 0.54534 0.66566 0.19229 25.56092
✓ ✓ × × 0.18952 0.54987 0.66362 0.19494 25.23063
× × ✓ × 0.18781 0.54672 0.66534 0.19200 25.52842
× × ✓ ✓ 0.18879 0.54857 0.66485 0.19439 26.15635

Table 2. Performance metrics across different unseen font scenarios for our model enhanced with the RAG module. Surprisingly, RAG
does not improve standard evaluation metrics, including L1 Loss, RMSE, SSIM, LPIPS, and FID.

Unseen Settings Metrics

SS SC CS CC L1 Loss ↓ RMSE ↓ SSIM ↑ LPIPS ↓ FID ↓

✓ × × × 0.19858 0.56531 0.65361 0.20315 26.49332
✓ ✓ × × 0.19875 0.56551 0.65507 0.20319 26.37470
× × ✓ × 0.19812 0.56434 0.65462 0.20121 26.61482
× × ✓ ✓ 0.19930 0.56612 0.65337 0.20307 27.13604

Table 3. Performance metrics for unseen font style (SS). The evaluation results for DG-Font and CF-Font are sourced from the CF-Font
paper.

Unseen Settings Metrics

SS SC CS CC L1 Loss ↓ RMSE ↓ SSIM ↑ LPIPS ↓ FID ↓

✓ × × × DG-Font 0.07841 0.2442 0.6853 0.1198 27.98
✓ × × × CF-Font 0.07394 0.2354 0.7007 0.1182 26.51
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